Eat Well, Live Well.

味の素株式会社事業説明会

グリーン領域における ロードマップ実現に向けて

執行役 ビジネスモデル変革担当グリーン事業推進部長柏原 正樹

グリーン事業推進部 二宮 大記

2023年12月4日

この説明会・説明資料は、米国における証券の募集を構成するものではありません。1933年米国証券法に基づき登録を行うか、登録の免除規定に該当する場合を除いて、米国において証券の募集又は販売を行うことは許されません。

本日お伝えしたいこと

- アミノサイエンス®を活用したグリーンフードとアグリの事業を推進し、
 2030年に売上1,000億円規模の事業を構築。 サステナブルな食システムの構築、
 事業を通じたGHG削減に貢献する。
- ・ グリーンフード事業は環境負荷の低いプラントベース、培養肉、精密発酵など 次世代のフードシステム開発を推進、地域の食文化や多様化する生活者の好みや 価値観に合わせた食のライフスタイルを提供する。
- ・スタートアップ企業との協業を通じてスピーディーに事業基盤を構築。プラントベース向けソリューション、シンガポールにおける生活者向け事業を起点に、各地域本部と連携してグローバルに展開を図る。
- アグリ事業はバイオスティミュラントを通じて、農作物の土地収量向上、 気候変動耐性、栄養成分強化、環境負荷の低減を図る。

領域が目指す姿

グリーンフード事業、アグリ事業を推進し、GHGの削減など地球環境の維持、サステナブルな 食提供に貢献する

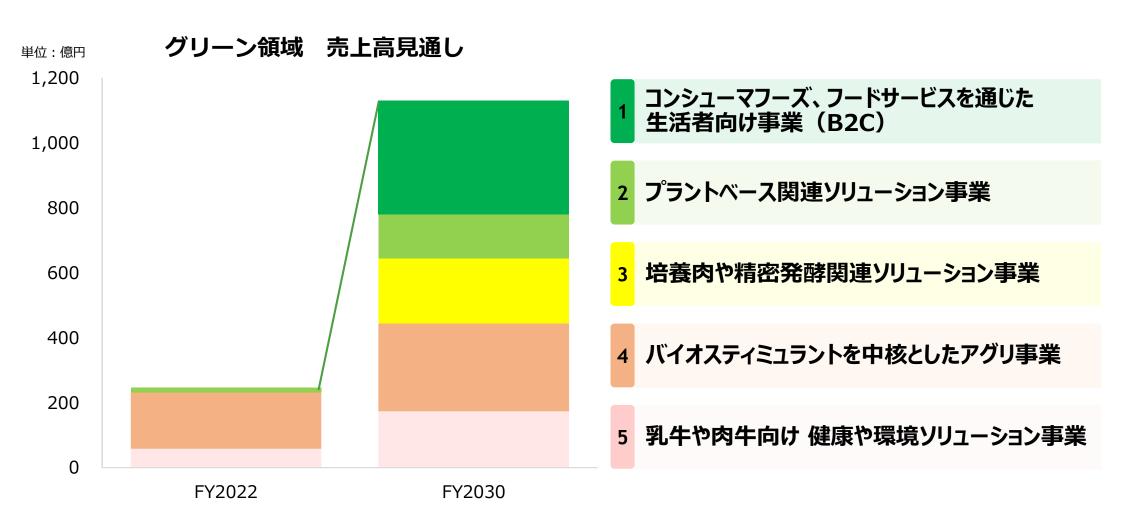
アグリ事業 グリーンフード事業 新しい食の 農業支援 ライフスタイルの提供 バイオスティミュラント 地域の食文化、多様化する 土壌バイオーム改良 グ 生活者の好みや価値観に合わせた リーン領域 食のライフスタイル 次世代フードシステムの開発 サステナブル・ の事業 環境負荷の低いたんぱく質素材 バイオサイクル プラントベース アミノ酸製造 サステナブルな原料へ 細胞ベース 畜産向け飼料 微生物ベース 排出GHGを低減 当社の強み アミノサイエンス®

アウトカム

GHG削減への ポジティブインパクト* を創出

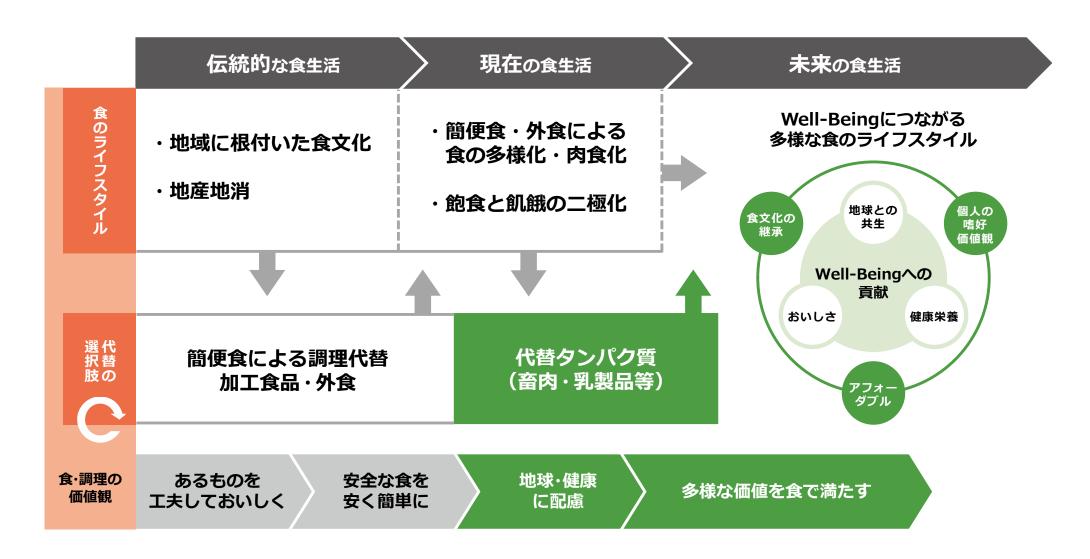
160万トン/年

サステナブルな 食提供に貢献


地球との共生 おいしさ 健康栄養

* 自社生産におけるGHG排出削減ではなく、新しいフードシステムに置き換わることにより生まれるGHG削減の効果

事業戦略と目標


アミノサイエンスと食品の技術を融合したユニークなB2Bソリューションを起点に、 食品素材や農業資材から食品B2Cまで、グローバルな事業展開を図る

グリーンフードが目指す姿

Well-beingにつながる多様な食のライフスタイルを提案

次世代フードシステムの構築に向けて

「おいしさ設計技術®」と「先端バイオ・ファイン技術」を融合し、より付加価値の高い 代替たんぱく食品向けのフードシステムを構築する

先端バイオ・ファイン技術

おいしさ設計技術®

	素材生産	素材加工	食品加工	食品
畜産物	畜産 アミノ酸バランス飼料	カット、スライス ミンスなど	調味・調理,包装など	スライス肉、 ハム・ソーセージ _{など}
プラントベース	農業	加熱加工などマスキング、酵素	調味・調理,包装など 呈味・食感	プラントベース 肉・乳 _{など}
細胞ベース	細胞培養 アミノ酸、成長因子	加熱加工など	調味・調理,包装など	培養肉・魚など
微生物ベース	微生物培養 アミノ酸、培養技術	混合、乳化 など	調味・調整,包装など	精密発酵乳など

次世代フードシステムの構築に向けて

新しいフードシステムの環境負荷は、畜産物の1/10~1/100程度低いとされる

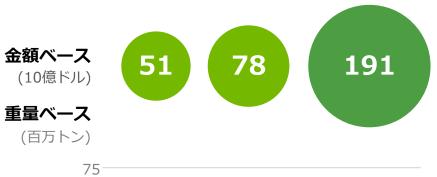
各たんぱく源の環境負荷

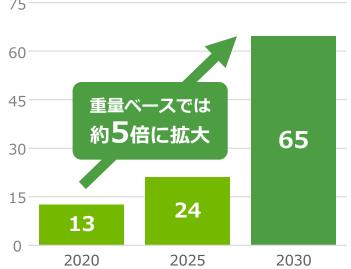
	温室効果ガス排出	水の使用量	陸地使用量
	(kg CO2e /タンパクkg)	(kl/タンパクkg)	(m2/タンパクkg)
畜産物	57~499	34~112	6~250
	_(鶏~牛)	_(鶏~牛)	_(鶏~牛)
プラントベース	4~27	0.4~5	10~34
	(えんどう豆~小麦)	(大豆~小麦)	(大豆~えんどう豆)
細胞ベース	2.5~13.6	1	1~2
微生物ベース (水素酸化細菌)	5	1	1

*水使用量: https://waterfootprint.orgから引用

*培養肉: 「培養肉に関するテクノロジーアセスメント」(東京大学)、「LCA of Cultivated meat」(CE Delft)より引用

*微生物たんぱく: Solar foods社資料より引用。仮想窒素係数は、味の素社内データ

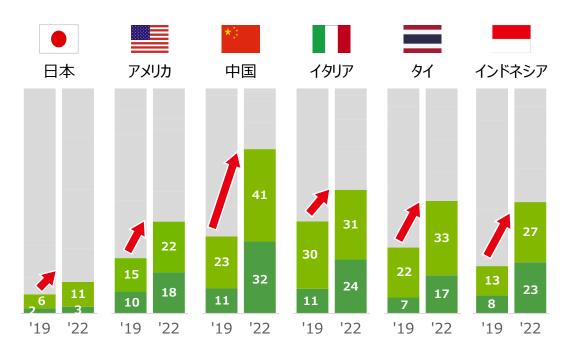

代替たんぱく食品市場とその成長性



人口増加・食肉需要の増加と消費者意識の改善に伴い、代替たんぱく食品(PBP*/培養肉)の市場が拡大

* PBP: Plant Based Protein

代替たんぱく食品市場の成長予測

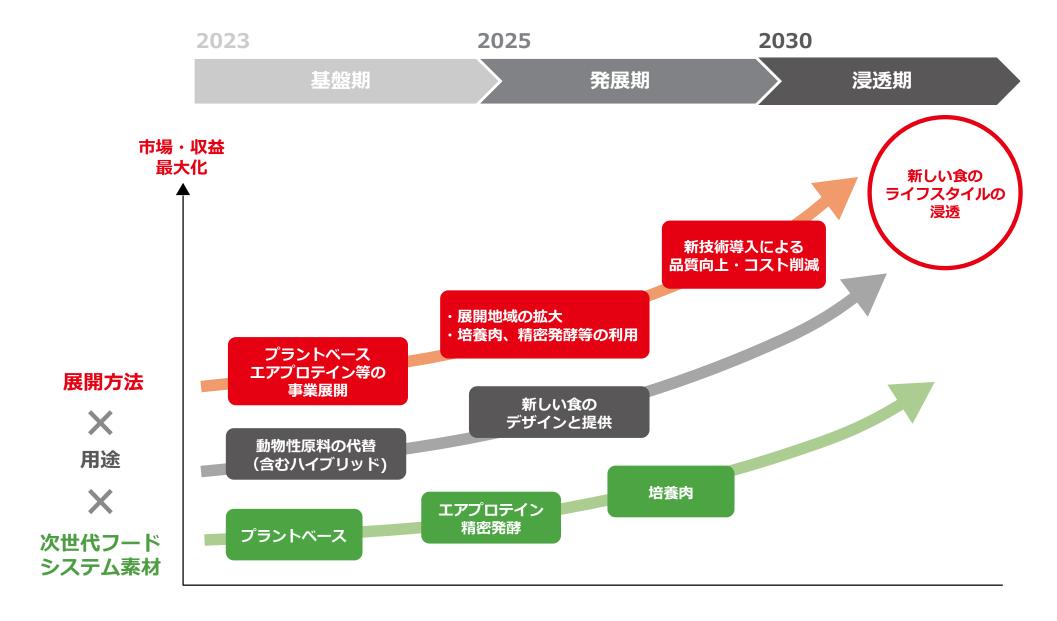


注:代替たんぱくは、植物・培養・発酵すべてを含む Source:BCG report "Food for Thought: The Protein Transformation(2021)"

食分野でのサステナビリティ意識の拡大

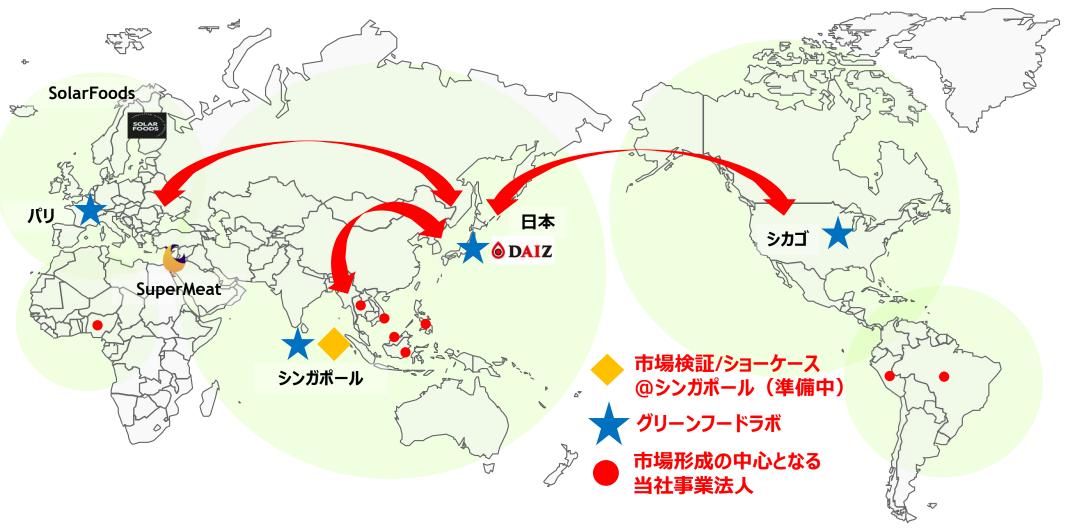
日常で購入する食品のサステナビリティ意識(単位:%)

- 高くても意図的にサステナブルなものを選ぶ
- 意図的に選ぶ。ただし価格が一般商品と同等のみ
- 意図的には選ばない/不要である

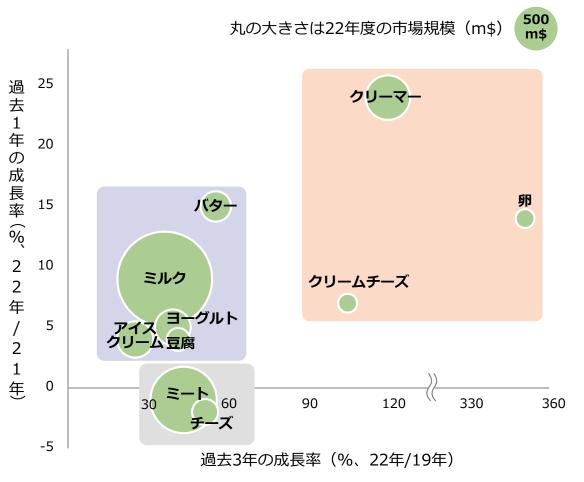


Source: SIGMAXYZ Food for Wellbeing survey (2022)

新しい食のライフスタイル浸透に向けたロードマップ



グローバル展開の開発拠点


新しいフードシステムの許認可が進み、比較的高い生活者受容が見込まれるシンガポールで新製品の提供と発信を行う。 グリーンフードラボでは、地域の食文化に合わせた新しい食のライフスタイルを提案、地域法人を通じて グローバルな展開を図る。

市場動向、業界動向 プラントベース食品の市場動向

デイリーカテゴリーやエッグが堅調に成長する一方で、市場をけん引してきた肉・チーズでは成長が鈍化。 今後はおいしい製品をアフォーダブルな価格で提供できる企業のみが生き残ることができる。

市場規模は小さいが安定して 高い成長性が見られるカテゴリー

卵、クリーマー等

健康価値・おいしさを訴求し、 安定した成長を続けるカテゴリー

ミルク、ヨーグルト等のデイリー

プラントベース市場をこれまでけん引も、 成長が鈍化しているカテゴリー

ミート、チーズ

Source: GFI、グローバル・金額ベース

プラントベース食品へのソリューション提案

統合ソリューション提案を通じ、プラントベース食品の品質向上と社会課題解決に貢献する

Plant Answer ™* を通じた 統合ソリューション提案

顧客に寄り添い、最適なソリューションを 共創し、顧客の本質的な課題に対し 答えを出す(="Answer")

〈ソリューション提案の具体例〉

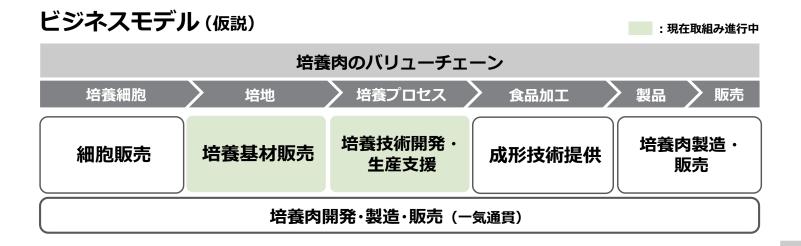
ブランド第1号製品(異風味低減素材)を 23年Q4に上市予定

当社の提供価値	香り	味	食感
プラントベース 肉・魚	原料豆由来の 異風味の低減 (豆臭さ、青臭さ)	不足しが ち な ジューシー感、	リアル肉に近い 弾力の付与
	グリル時に リアル肉が発する 調理 香 の再現	油脂感の付与	
プラントベース乳	豆由来異風味 低減	不足しがちな 濃厚感、フレッシュ感	リアルチーズに 近い物性の実現 (とろけ、伸びなど)
	リアルチーズの 香りの再現	の付与	舌触り の改善 (ざらつき)

プラントベース食品へのソリューション提案

DAIZ社の独自技術に当社「おいしさ設計技術®」を活用したプラントベースミートがセブン-イレブン・ジャパン社で採用

素材の開発・製造 **ODAIZ** 発芽豆由来の 植物肉の開発・製造 Eat Well, Live Well. **MJINOMOTO** 「おいしさ」を設計する 技術・素材の提供 (独自素材による豆臭のマスキング等)


培養肉が創る世界とビジネスモデル仮説

当社の強みが生きるバリューチェーンの要所で事業を展開し、社会的価値、生活者価値を創出する

味の素の強み

エアベースプロテイン「Solein®」の事業化

Solein®を使いサステナブルかつおいしくて、ヘルシーな食品をシンガポールを起点に展開し、日常生活を通じて、環境に貢献できるような新しい食のライフスタイルを提案

Solein®とは

フィンランドのSolar Foods社が開発したCO2を 原料に生産される微生物タンパク質 2024年上旬に工場(Factory01)が稼働予定

低環境負荷

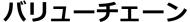
植物と比べても水、土地の使用量、 CO2排出量が少ない

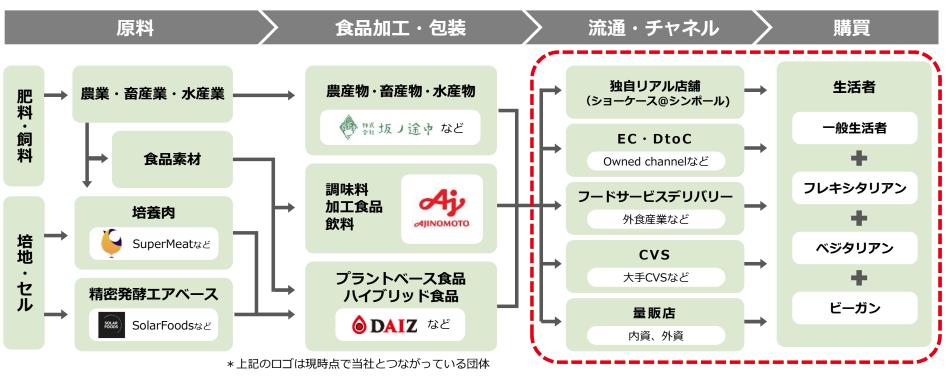
	水使用量 (L / kg of protein)	土地使用量 (m2/ ㎏ of protein)	CO2排出量 (kg / kg of protein)
肉牛	600,000	200	200
植物	100,000	20	5
Solein®	1,000	1	1

多様な加工特性

幅広いアプリケーション に応用可能

卵代替 (パスタ)


高い栄養価


約70%の高タンパク質、食物繊維、 鉄、ビタミンB群を含有

素材・技術開発を進めるとともに、「代替」だけではない新しい価値の発信、体験提供など 流通や生活者への働きかけが重要

関連パートナー
 大学・研究機関 銀行・商社 政府・省庁 コンサルタント 団体・協会 業界内での共創体制、法制化/インセンティブ (カーボンクレジットなど) などの仕組み構築

アグリ事業 バイオスティミュラントを用いた農業における環境負荷の低減

アミノサイエンス®を活用したバイオスティミュラントを通じ、農業の効率化、作物の高品質化、 環境負荷の低減を図る

アミノサイエンスと食品の 事業知見を融合したアグリ事業 バイオスティミュラント; 農作物の栄養吸収、病気抵抗などの効率を高める刺激物質

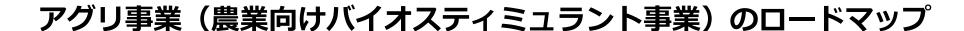
栄養成分 (タンパク、ビタミン、糖分など) の向上

品質の向上

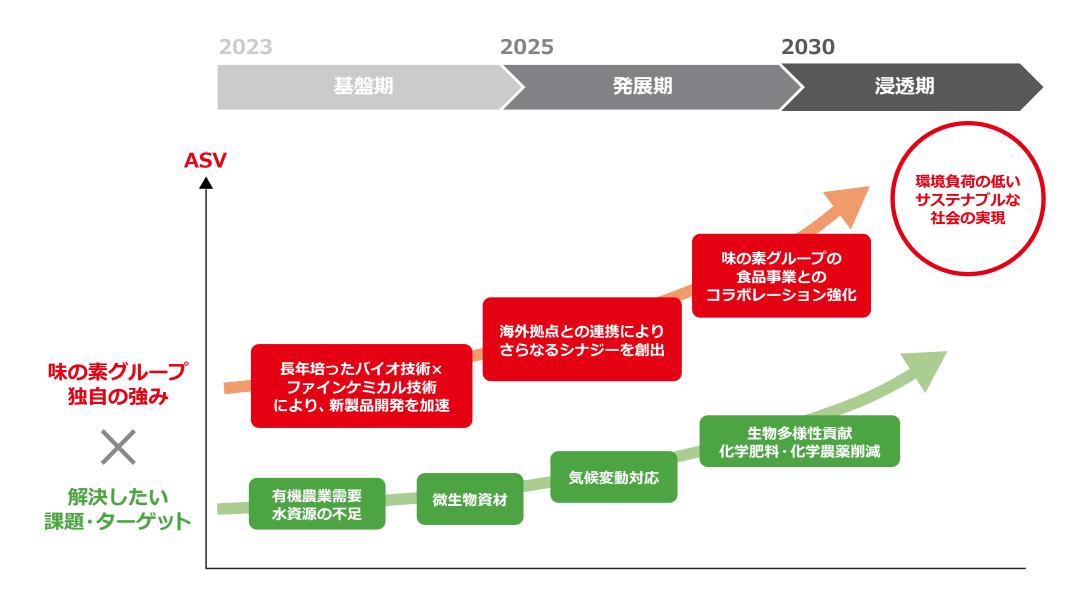
水使用の低減

化学肥料、化学農薬の低減

利用燃料の低減

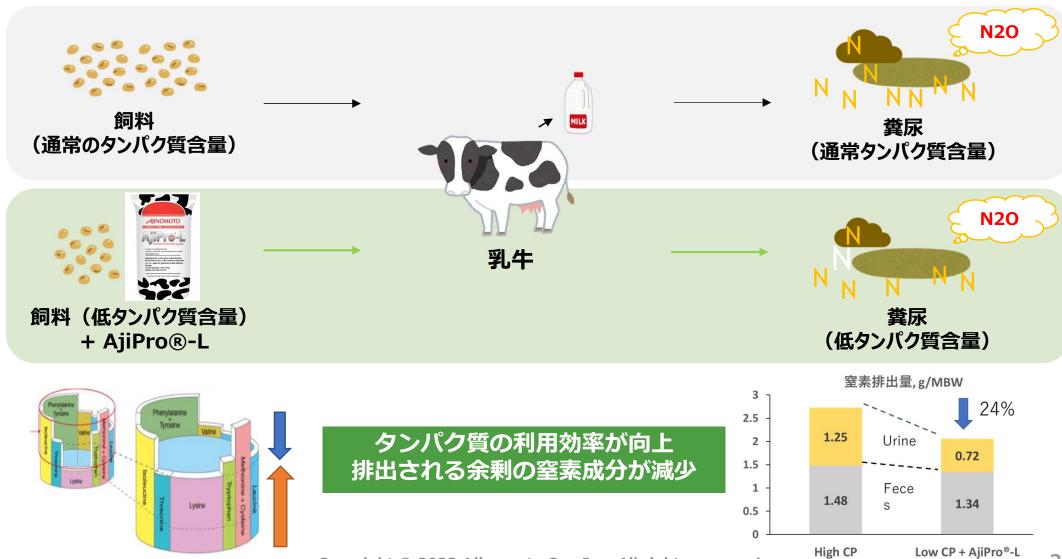

気候変動 (干ばつ、熱波、冷害) 耐性

農業の効率化、作物の高品質化への期待

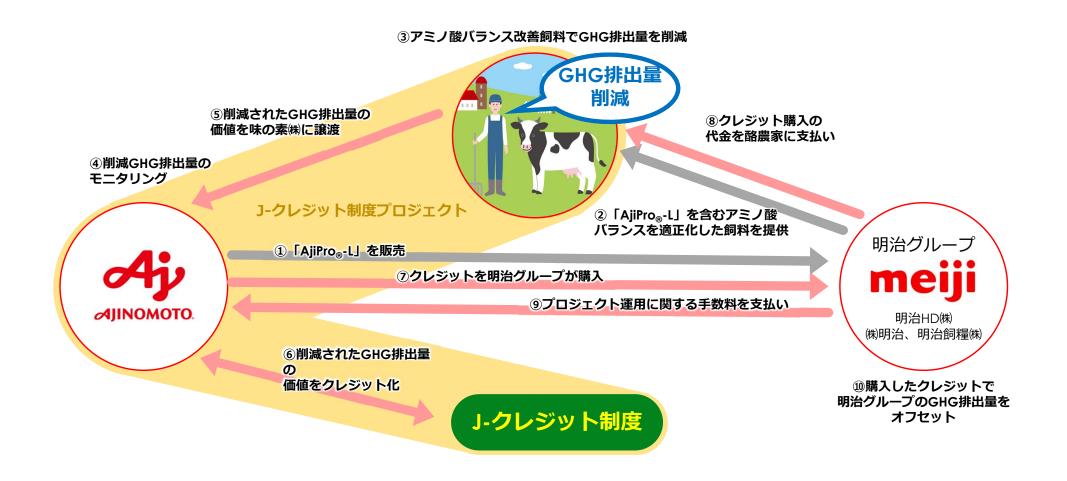


農業の環境負荷低減への期待

農業収量	土地利用効率	使用水	化学肥料	使用燃料
Up to 23.7%	Up to x 1.23	Up to -25%	Up to -25%	Up to



アミノ酸バランス飼料を用いた酪農における環境負荷の低減


低たんぱく化した飼料にAjiPro®-Lを利用することで、乳の生産量を維持したまま、 亜酸化窒素(N2O)を低減。グローバル乳業メーカー・食肉メーカーと提携検討を開始。

明治グループと持続可能な酪農業の実現に向けた協業を開始 日本で初めてアミノ酸を活用したJ-クレジット制度プロジェクトを酪農業で実施

Eat Well, Live Well.

- ◆ 本資料に記載されている業績見通し等の将来に関する記載は、
 本資料の発表日現在における将来の見通し、計画のもととなる前提、
 予測を含んで記載しており、当社としてその実現を約束する趣旨のものではありません。実際の業績は、今後様々な要因によって、
 大きく異なる結果となる可能性があります。
- 本資料には監査を受けていない概算値を含むため、数値が変更になる 可能性があります。
- アミノサイエンス®は味の素株式会社の登録商標です。